Up and down this longitude. #westcoast #SEA to #SD Word up to the state of #Oregon (at Haystack Rock)

sweetsoles:

Nike Air Max 1 x Atmos ‘Viotech’ (by LSean)

sweetsoles:

Asics Gel Lyte III ‘Camo Pack’ - Grey/Light Blue/Black (by Martina Cyman)


unbasic:











unbasic:











































































































































































lnvaded:








priceofliberty:

New coating turns ordinary glass into super glass
A new transparent, bioinspired coating makes ordinary glass tough, self-cleaning and incredibly slippery, a team from the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard School of Engineering and Applied Sciences (SEAS) reported online in the July 31 edition of Nature Communications.
The new coating could be used to create durable, scratch-resistant lenses for eyeglasses, self-cleaning windows, improved solar panels and new medical diagnostic devices, said principal investigator Joanna Aizenberg, Ph.D., who is a Core Faculty Member at the Wyss Institute, Amy Smith Berylson Professor of Materials Science at SEAS, and a Professor of Chemistry and Chemical Biology.
The new coating builds on an award-winning technology that Aizenberg and her team pioneered called Slippery Liquid-Infused Porous Surfaces (SLIPS)—the slipperiest synthetic surface known. The new coating is equally slippery, but much more durable and fully transparent. Together these advances solve longstanding challenges in creating commercially useful materials that repel almost everything.
SLIPS was inspired by the slick strategy of the carnivorous pitcher plant, which lures insects onto the ultraslippery surface of its leaves, where they slide to their doom. Unlike earlier water-repelling materials, SLIPS repels oil and sticky liquids like honey, and it resists ice formation and bacterial biofilms as well.
While SLIPS was an important advance, it was also “a proof of principle” – the first step toward a commercially valuable technology, said lead author Nicolas Vogel, Ph.D., a postdoctoral fellow in applied physics at Harvard SEAS.
the honeycomb structure of the SLIPS coating on the glass slides confers unmatched mechanical robustness. It withstood damage and remained slippery after various treatments that can scratch and compromise ordinary glass surfaces and other popular liquid-repellent materials, including touching, peeling off a piece of tape, wiping with a tissue.

If I could change one thing about engineering education — well, actually, all education — it would be to center it around solving real problems and making things. In other words, we ought to be creating innovators and inventors at our engineering schools. They need to be able to do something more than solve theoretical problems when they leave us. In other words, they should learn how to be an applied problem solver, which is not the same thing as being a fantastic book-based equation solver. None of us learned how to do anything well by being talked at — it’s boring. We learn best by doing — getting our hands dirty and making our own mistakes.
Ideas for Improving Science Education in the U.S. - NYTimes.com (via infoneer-pulse)